人工智能行业分析报告怎么写:附行业概况及发展趋势分析

1 AI 大模型推动计算机历史三次x大浪潮实现“三山叠峦”

此次 AI 浪潮与以往科技产业浪潮x大不同在于,这次不是终端硬件变革开启, 而是软件先行定义一切,催生算力硬件需求和后续各类物联网终端变革,而且起步 就是x大想象空间的市场:大模型将计算机行业历x大想象空间的互联网x 高流量入口、公有云x大市场、新时代的操作系统合三为一。具体表现为:大模型 成为知识与舆情输入与输出的战略制高点,其战略地位将远高于互联网时代的搜 索引擎;云计算由 SaaS 走向 MaaS,底层算力和上层 AI 开发平台边际成本递减 明显,MaaS 将成为公有云x重要的市场;自然语言交互平台将成为统一万物的新 时代操作系统。

AI 大模型将撬动超 6 万亿美元的三大巨头,带动国内超 10 万亿元 AI 产业。 以三个x大空间的龙头公司为例,互联网x高流量入口谷歌市值 2.0 万亿美 元,公有云x大市场亚马逊市值 1.9 万亿美元,新时代操作系统微软市值 2.6 亿万美元,AI 大模型将首次使得三大龙头合一。据《新一代人工智能发展规 划》,我国 2030 年有望实现人工智能核心产业规模超过 1 万亿元,带动相关产业 规模超过 10 万亿元。

 

 

市场对大模型的认知经历了“逢模必炒”到“百模大战”觉得不再稀缺两个 端。随着 AI 大潮的开启,多家大型科技企业、A 股上市公司及创业公司都开始发 布 AI 模型。

实际上大模型终局类似“太拳”,易学难精,x终拥有持续的数据场景资源、 能够迭代到接近 ChatGPT 水平的企业凤毛麟角,从终局会集中在少数几个公司的 格局确定性与弹性空间来看,大模型仍然是 AI x具投资价值的方向之一。

2 ChatGPT 所代表的大模型意义不亚于电力革命 中的交流电与信息革命中操作系统的诞生

基于对过去 150 年的电气时代和信息时代更替的回顾,AI 引领的智能革命不 亚于电力革命与信息革命对人类发展的意义。以电气时代和信息时代为参考:AI 时 代以 ChatGPT 为代表的大模型 AI 的成熟如同交流电发电站和电脑硬件成熟一样, 拥有需求爆发的基础;而 ChatGPT+Plugin 的开发模式重要性如同电气时代的交 流电和信息时代的操作系统,完善生态平台;的 AI 时代应用需求爆发已经到 达奇点。

2.1 电气时代:技术奇点突破推动电力赋能千行百业

2.1.1 电力产业技术奇点突破,推动电力行业需求端迎来飞跃式发展

人类对电力的探索和使用经历了一个很长时间的过程,技术奇点突破真正推 动了电力的普及和大发展。公元前 500 年,古希腊哲学家泰勒斯通过在琥珀上摩 擦皮毛,发现了静电。1745 年,荷兰莱顿大学教授布罗克制作了莱顿瓶,将电荷储 存起来,供电学实验使用,但人类至此尚未经历真正的大规模用电时代。本杰明. 富兰克林风筝实验证明了雷雨天的电就是一种自然的放电现象,随之而来的电学 研究,诸如:电池、电荷、导体、避雷针等逐渐融入人们的日常生活中。但在这个 阶段,零散的电力终究难以在人类社会中发挥x大的价值,技术奇点突破则真正推 动了电力的普及和大发展。

技术奇点突破之一:发电站的建立,改变零散电力无法集中使用的局面,推动社会资源建立起真正意义上可供现代工业社会使用的电力系统。1882 年 9 月,爱 迪生在曼哈顿下城的珍珠街建立了x个XXX水力发电站,通过使用通用电气公 司发明的直流输电系统,成功的为威斯康星州阿普尔顿的一所普通家庭供电,这也 促使直流输电系统成为当时美国的标准电力传输形式。

技术奇点突破之二:交流电的普及应用,真正解决了电的长距离传输问题,进 而使电力大规模普及,仅用约 30 年时间,到 1913 年,全世界的年发电量达 500 亿千瓦时。随后的约百年时间里,全球发电量增长超过 500 倍,电器开始走到生 产生活的每一个角落。特斯拉在 1887 年发明了交流电动机,这项技术使得交流电 得以广泛应用。这项技术的发明使得交流电可以用来驱动电力工具和机器,而不仅 仅是用于电力传输。特斯拉的交流电技术被广泛应用于现代电力系统,从发电厂到 家庭用电,都离不开这项技术。与直流电相比,交流电可以更好地传输长距离的电 力,并且更容易通过变压器进行转换。这些优点使得交流电成为了现代电力系统的 基础,电力可以从发电厂传输到家庭和企业,改变了人类社会的生产和生活方式。 到 1913 年,全世界的年发电量达 500 亿千瓦时,电力工业已作为一个独立的工业 部门,进入人类的生产活动领域。2021 年全世界发电量达到 28.47 万亿千万时, 1913 年到 2021 年的约 108 年的时间内,全球发电量增长了超过 500 倍。电器 开始用于代替机器,成为补充和取代以蒸汽机为动力的新能源。随后,电灯、电车、 电影放映机相继问世,电器走进了人类生活的每一个角落,人类进入了“电气时 代”。

 

 

进入 20 世纪,电力不仅自身需求快速增长,而且成为了经济发展的重要支柱, 是经济发展的“晴雨表”,其对经济发展的影响是重大而深远的。考察 1979-2022 年国内发电量增速与 GDP 增速变化,我们发现在大多数年份,发电量的增长都和 经济增长趋势相一致。因此,突破技术奇点后,电力自身的需求不仅快速持续增长,而且已经和经济发展深度融合,成为经济发展的支柱和“晴雨表”。

2.1.2 类比电力发展,AI 到达技术奇点后也将迎来需求的大爆发

我们认为,AI 的发展在一定程度上可以和电力产业发展的历史相类比: 1)技术奇点突破,电力需求大幅度且持续提升,1913 年以来的百年间全球 发电量增长超 500 倍。人类对电力的探索时间很长,但一直处于零星探索和使用 的状态,直到 19 世纪 80 年代技术奇点突破后才迎来真正的变革机遇:一是变分 散为集中,发电站的建立使得社会真正集中使用电力,赋能工业社会;二是解决了 应用范围小的问题:交流电更好地传输长距离的电力,进而让电进一步的普及到人 类社会的每一个角落。约 30 年后,1913 年全世界年发电量就达到了 500 亿千瓦 时,整个产业不仅实现了需求重大突破而且后续快速发展。2021 年全世界发电量 达到 28.47 万亿千万时,1913 年到 2021 年的约 108 年的时间内,全球发电量增 长了超过 500 倍。

2)对标之下,AI 技术奇点突破后,对软件的重构将开启巨大的需求空间。人 类对 AI 的探索期也很长,视觉技术促使 AI x次在人类生活中的普及,即 AI 赋 能硬件,比如图像识别、人脸识别基础上的视频监控等应用。我们认为以 ChatGPT 为代表的技术实现了 AI 的又一次飞跃,在 AI 赋能硬件的基础上,有望对软件带 来彻底重构,进而激发需求端的重要潜力:

x,对标交流电,电力突破技术奇点后开始赋能千行百业,相比之下 AI 重 构软件带来应用的普及和深化,进而创造更大空间。交流电的普及让电力走到了人 类社会的每一个角落,AI 技术奇点突破后对软件重构之后也必将推动软件应用的 大深化,软件使用频次将更高,辐射范围也将更广,进而开启更大的需求空间。

第二,对标发电站的建立,发电站实际上是集中资源对各个行业进行赋能;AI重构软件实际上加深了对产业的赋能,进而“产业+AI”也有望开启更大的需求空 间。发电站的建立推动社会资源建立起真正意义上可供现代工业社会使用的电力 系统,让人们可以用电力赋能产业的发展。AI 技术奇点突破后重构软件,实际上 赋予了软件更多的跨越性的功能,进而加深对产业的赋能力量,进而“产业+AI” 也有望开启更大的需求空间,创造更多的需求。

第三,对标电力对经济活动的影响,AI 有望对经济发展产生长期而深刻的影 响。对标电力对经济活动的深刻影响,我们认为电力作为一种基础设施,已经是经 济发展的支柱和“晴雨表”;对于 AI,其作为一种重要的生产力,在赋能硬件、重 构软件的基础上,在长期发展中不仅将提升自身需求、赋能多个行业,而且也有望 对经济发展产生深刻而巨大的影响。

 

 

2.2 信息时代:操作系统带动海量应用需求

2.2.1 操作系统提供应用开发和使用条件,推动应用需求

信息时代的开端来自于摩尔定律的出现,而信息时代增长的拐点来自安迪比 尔定律的出现,两者双轮驱动带来了 60 年的信息时代发展浪潮。摩尔定律于 1965 年由英特尔创始人之一摩尔提出,简单来说是集成电路每隔 18-24 个月性能将提 升一倍,这奠定了 60 年来全球集成电路的发展趋势。安迪比尔定律是 1990 年英 特尔 CEO 安迪与微软 CEO 比尔盖茨一起提出,简单来说就是软件的发展总能够 尽快耗尽硬件性能,逼迫硬件性能进一步提升。1995 年,windows 操作系统的发 布是两大定律的重要结合点,进而开启双轮驱动全球科技发展的格局。

操作系统核心功能是用来管理越来越复杂的硬件,操作系统简化计算机使用 为软件发展打下基础,进而推动 1990 年至今的互联网浪潮。x部计算机由于构 造简单并没有操作系统,后续随着晶体管、硬盘、CPU、存储器、显示器、键盘、 喇叭等众多电子元器件加入,计算机硬件设备变得越来越复杂,使用 DOS 等复杂 操作系统学习难度较大,简化的操作系统需求迫切,没有简化操作系统就很难开发 出用户可以正常使用的应用。1993 年微软 Windows NT 面世将图形化操作正式 带向全世界(之前是编程为主的 DOS),图形化操作系统使得电脑使用门槛降低, 带来了互联网应用的全面爆发,进而推动互联网全面普及。

 

 

操作系统带动软硬件上下游产业链共进,共同拓宽应用边界。以信息时代x具 代表的 Wintel 联盟为例,据亿欧分析,在硬件上,Wintel 通过捆绑销售,牢牢把 握住对产业下游生产商的控制权;而 Intel 作为芯片 IDM 厂商,占据市场话语权。 在软件上,微软在专业应用软件及游戏方面推出不同层次的产品来与 Adobe、 SAP、Oracle、SAS 竞争,如 Dynamic、SQL Server、Skype 等;在开发者生态 上,由于 Windows 平台渗透率高,因此凝聚了大批的开发者,开发出各类应用软 件。

操作系统带来编译器工具链(或 IDE),催化各类应用爆发,带动互联网用户 使用人数不断提升。操作系统编译工具链,包括预处理器、编译器、汇编器、链接 器,所有的软件要想从源码变成二进制程序都需要它们来处理。凭借以 Windows 编译工具链为代表的集成开发环境(IDE)日渐成熟,互联网应用 1990 年代起快 速爆发,互联网用户人数也快速提升至当前的 40 亿人。

2.2.2 类比信息时代,AI 已经走向应用海量爆发的拐点

我们认为,当前的 AI 如同 1990 年代的操作系统:操作系统协调复杂硬件为 软件开发做基础,当前的 AI 已经初步拥有 AGI(通用 AI)的雏形是协调全球硬 件、软件、数据等构建强大基础平台,拥有成熟的软硬件产业链可以协同发展,并 且同时 Plugin 插件将成为 AI 时代的编程工具链,海量应用需求爆发拐点已现。 当前 AI 已经拥有 AGI 的雏形,“管理全球“的操作系统即将诞生。微软于 2023 年 3 月 发 表 论 文 《 Sparks of Artificial General Intelligence:Early experiments with GPT-4》认为 GPT4 可以解决跨越数学、编码、视觉、医学、 法律、心理学等的新颖而困难的任务,而无需任何特殊提示,微软x后的结论是 GPT4 已经可以作为 AGI 的雏形。同时,OpenAI 创始人奥特曼 2023 年 3 月曾提出“万物摩尔定律”,即 AI 智能性每 18 个月翻一番,我们认为随着 AI 智能性不 断增强,AGI 的研发终将取得成功。在多模态 AGI 的平台下,AI 不止可以管理数 据、网络,还可以操控机器人等硬件,有望成为“管理全球”的操作系统。

 

 

AI 软硬件产业链齐头并进,海外已有成熟云-边-端+AI 的产业蓝本。据火石 创造,AI 产业链分为 1)基础层:是人工智能产业的基础,通过海量数据形成人工 智能产业数据获取(传感器)、数据存储(云计算)、数据处理(芯片及云技术)能 力;2)感知层:是人工智能产业的中间层,通过机器感知及算法实现基础数据与 前端应用的紧密关联;3)应用层:是人工智能技术在各产业的应用,是人工智能 产业对其他产业的深度改造及赋能。在英伟达 GTC2023 发布会中,英伟达展示与 微软、AWS 等公司在云(DGX Cloud)-边(算力中心)-端(各类 AI 芯片)和 AI 应用(如 Picasso)深度合作的产业链蓝本。

“ChatGPT+Plugin”模式定义 AI 时代的应用开发方式,AI 应用井喷拐点 已现。通过多插件的相互协同构建私人定制的人工智能管家将是OpenAI的野望。 通过 ChatGPT 释放出的x批第三方插件中,基本全方位覆盖衣食住行、情感交 互、工作以及学习等日常所需。而相关插件的能力将通过 ChatGPT Plugins 的三 大基础套件:Browsing(联网插件)、Code Interpreter(代码编程器)以及 Retrieval(知识检索插件)。实现在统一平台上相互协调,从而形成应用程序协同 执行广泛场景的各类任务。

2.3 AI 时代:应用开发需求将达到水平

2.3.1 AI 兼具普惠性和易用性,MaaS 催化应用开发需求

当前 AI 产品超过人类智能水平同时,还拥有低的边际使用成本,AI 首次被 赋予普惠性,拥有全面赋能千行百业的硬性基础。据 SEQUOIA 测算,在 2015 年 至 2022 年期间,用于训练这些模型的计算增加了 6 个数量,其结果在手写、 语音和图像识别、阅读理解和语言理解等方面首次超过人类表现基准。与强劲的 AI 形成鲜明对比的是低的边际使用成本,以 OpenAI 产品定价为例,GPT-3.5- turbo 的费用仅为 0.002 美分/tokens,同时支持一次性 20 美元包月无限使用, 可以大程度降低边际使用成本。我们认为,当前 AI 费用门槛的大幅下降结合大 模型 AI 的性能优势,为 AI 被集成到更多的应用当中打下良好基础。

 

 

微软 Copilot 发布是 AI 领域的“iPhone”时刻,AI 应用开发边界得到扩展。 微软从 GPT 到 GPT3.5 的技术革新,到 GPT3.5turbo 的成本降低,到 Wishper API 发布,再到现在全面绑定,凸显自身从编程成本降低到x后全面内置于 Office365 全家桶发布 AI 标杆应用 Copilot,微软仅仅用了不到半年的时间即 打破数十年生产力的输出方式,Copilot 的面世不仅仅只是功能的增加,其内核在 于生产力的全新跃迁。Copilot的发布使开发者意识到AI已经是正在实际发生的、 正带来各行各业生产力质变的近期x大科技革命。据 SEQUOIA,当前各类大模型 AI 井喷,AI 已经走入各个行业的不同场景,并有望伴随大模型优化持续升。

2023 年 3 月 23 日 OpenAI 发表XXX,美国 80%以上的岗位都可以被 AI 赋 能,这一趋势有望在全球范围内推进。OpenAI 于 2023 年 3 月 24 日发表XXX 《An Early Look at the Labor Market Impact》,美国 80%以上的工作都有望与 AI 结合,若将同一工作 AI 工作时间相比人类工作时间降低 50%定义为有替代可 能,则 8%人类有可能会被替代、16%的人类在工作中有至少 50%的任务会被替 代。我们认为,AI 赋能千行百业已经趋势已经确立,未来各行业将带来更多 AI 应 用部署需求,以提升公司竞争力。

AI 时代 MaaS 将成为应用开发主要模式。AI 时代,C 端和 SMB 端客户没有 能力开发自己的大模型,这时需要使用 MaaS 模式在已经预训练模型的基础上进 行应用开发。据 AIIA 中国,MaaS 预训练基线智能水平大幅提升,平台多样化、 规模化,大家在云上可以找到自己所需的模型,各个大、中、小型 B 端客户和 C 端客户都有望通过自己的独特数据在云端进行定制化训练,带来海量应用需求。

 

 

使用自然语言为主的编程方式有望让每个人都成为开发者,结合 MaaS 保障 海量应用开发需求顺利落地。以 ChatGPT 的代码编程器为例,ChatGPT 打破编 程沟壑,仅通过文字描述即可实现各种功能:1)让 ChatGPT 编辑视频——只要 给出一个指令,ChatGPT 就会对上传视频文件进行处理,具备剪辑、添加等功能; 2)在 ChatGPT 内部的大量开发工作,并无需脱离用户界面,实现直接从其他系 统中调用所需代码进行开发工作。在低编程难度的背景下,借助 MaaS 带来的打 破 AI 训练壁垒以及越来越先进的模型自训练能力,AI 有望重现全民互联网一样的 普及度,保障海量应用开发需求顺利落地。

2.3.2 AI 时代已经拉开序幕,“AI+”正全面渗透

以海外 AI 应用开发龙头 C3.AI 为例,各行业 AI 应用相关需求高景气。据 C3.AI 官网,公司认为 2022Q4(对应 FY2023Q3)开始的 AI 浪潮是过去三年未 有的巨大变化,AI 相关的解决方案、应用开发需求在各行各业间快速涌现,公司 重建并大幅扩展了业务伙伴生态,与谷歌云、AWS、微软 Azure 等 236 家公司建 立 AI 领域的深度合作,这驱使着公司收入在连续两个季度负增长后重回 8%。我 们认为,以 AI 发展更快的美国市场为前瞻,AI 应用爆发有望带动相关计算机公司 收入增长。

国内政策持续推动 AI 技术赋能各行各业。目前国内非常重视解决 AI 重大应 用和产业化问题,着力打造人工智能重大场景,形成可复制推广的标杆应用。随着 我国在数据、算力、算法及模型的基础层资源与研究积累日益丰富,使得 AI 技术 不仅可以提高生产效率和质量,还可以为各行业提供更智能化的解决方案,为开展 下游人工智能场景创新应用打下了坚实基础。2022 年,我国陆续出台一系列指导 意见及通知,持续加强对人工智能场景创新工作的统筹指导,规范与加强人工智能 应用建设,实现 AI 与实体产业经济的深度融。

2023 年为国内 AI 市场增长拐点,未来五年进入复合增速 26%的高增阶段。 据艾瑞咨询,若定义我国人工智能产业为 AI 应用软件、硬件及服务三部分,则 2022 年中国人工智能产业规模达 1958 亿元,目前中国大型企业基本都已在持续规划投 入实施人工智能项目,未来随着中小型企业的普遍尝试和大型企业的稳健部署,在 AI 成为数字经济时代核心生产力的背景下,AI 芯片、自动驾驶及车联网视觉解决 方案、智能机器人、智能制造、决策智能应用等细分领域增长强劲。2027 年人工 智能产业整体规模可达 6122 亿元,2022-2027 年的相关 CAGR 为 25.6%。

 

 

据艾瑞咨询的数据显示,AI 视觉作为近两年 AI 产业x重要的细分赛道,2022年市场规模达到 830 亿元,预计 2027 年市场规模达到 1644 亿元,2022-2027 年的复合增长率为 14.6%;同时伴随着新型的自然语言处理工具 ChatGTP 的应用 场景不断的被市场挖掘,也带动了自然语言处理产业规模不断扩大,预计 2027 年 市场规模达到 219 亿,2022-2027 年的复合增长率为 20.1%。与此同时,智能语 音、人机交互、机器学习等细分领域也保持快速增长。

“AI+制造业”:智能制造是制造业价值链各个环节的智能化,融合了 AI 技 术、信息与通信技术、工业自动化技术、现代企业管理以及先进制造技术五大领域 技术的全新制造模式。具有自感知、自决策、自执行、自适应、自学习等特征,旨 在提高制造业质量、效率效益和柔性的先进生产方式。近些年,我国智能制造发展 呈现良好态势,供给能力不断提升,智能制造装备市场满足率超过 50%,主营业 务收入超 10 亿元的系统解决方案供应商达 40 余家。同时随着数字孪生、建模与 仿真等关键技术的不断强化,在试点示范项目上的应用成效提升明显,试点示范项 目生产效率平均提高 45%、产品研制周期平均缩短 35%、产品不良品率平均降低 35%。

“AI+交通”:智慧交通融入了人工智能、物联网、云计算、大数据、移动互 联等技术,旨在构建起一种在大范围、全方位发挥作用的高效、安全、环保、舒适、 文明的运输和管理系统,实现交通的系统性、实时性、信息交流的交互性,提高道 路使用效率,短途运输效率以及道路通行能力,大幅降低汽车能耗,使交通堵塞减 少。智慧交通系统按照技术层可分为感知层、通讯信层、平台层和应用层,AI 在 智慧交通中通常用于车辆控制、事故预测以及交通控制等方面。据中国智能交通协 会公布的数据显示,2022 年,我国智慧交通市场规模达到 2133 亿元,预计 2026 年有望突破 4000 亿元,年均复合增长率在 16%左右。

 

 

“AI+电力”:人工智能赋能新型电力系统下新能源发电、变电、调度、配网、 安监、营销、基建以及企业经营管理等领域业务智能化应用,将有效推进新型数字 基础设施建设,助力新型电力系统智能化发展。基于云平台、深度学习框架以及图 像识别、语音识别、自然语言处理等 AI 技术能力为电力企业提供专业化模型训练 和智能化分析以及诊断服务,包括 1)提供精准的能源需求预测,帮助企业制定更 加科学合理的能源调度方案,避免因能源短缺或过剩而造成的浪费和损失;2)对 电力系统进行实时监测和优化,提高电力系统的稳定性和安全性,降低事故风险; 3)提高电力设备的维护效率和准确性,降低设备故障率,从而降低维护成本和提 高设备使用寿命。

“AI+医疗”:智慧医疗指应用信息技术及人工智能算法辅助医疗预防、检验、 分析、诊疗、愈后康复、保健全过程的技术应用,主要应用方向包括 1)智慧医院 管理;2)智慧诊断;3)辅助诊断三个方面。在智慧医院管理方面,医院不仅可以 利用 AI 机器人为患者提供全生命周期、精准化的智慧医疗健康服务,比如帮助患 者导航、提供病情咨询等,同时 AI 技术还可以自动优化医生、护士的排班安排, 提高医院的工作效率。在智慧诊断方面,AI 技术可以通过医疗影像分析、自然语 言处理等技术手段,帮助医生自动识别和判断疾病,提高医疗诊断的准确性和速度。 在辅助诊断方面,医院可以通过 AI 技术对患者的康复情况进行监测和评估,为医 生提供康复建议和治疗方案,同时还可以通过人工智能机器人、语音识别等技术手 段,为医生提供手术辅助和技术支持,提高手术效率和准确性。

“AI+教育”:智慧教育是以人工智能、大数据、物联网等新兴技术为基础,依托各类智能设备及网络所实现的一种智能技术与教育深度融合的新型教育样态, 通过人机交互、数据共享、知识互联、云计算等关键技术满足学生智慧化、个性化、 精准化学习需求。目前常见的 AI 应用场景包括:1)可以通过自然语言处理、机器 学习等 AI 技术手段,自动评估学生的作业、考试等学习成果,以及实时分析学生 学习过程,帮助学生及时纠正错误,提高评估的准确性和效率。2)可以通过语音 识别、人脸识别、智能机器人等 AI 技术手段,为教师提供智能辅助和技术支持, 比如自动记录教师上课内容,帮助教师进行教学回顾和总结等,提高教学效率和质 量。3)可以通过数据分析、预测分析等 AI 技术手段,分析学生学习情况和教学质 量数据,帮助管理者制定更加科学的教育管理策略。

“AI+矿山”:智慧矿山是将云计算、大数据、人工智能、虚拟现实等技术与 矿山生产自动化装备等进行底层融合,构建出设备感知层、数据中心层、智慧决策 层、业务应用层以及展示交互层的五层智慧矿山业务架构,将矿山的开拓、采掘、 运输、分选、安全、环保等生产活动进行x优化的协同管控,统筹实现矿山开采在 生产效率、经济效益和安全环保水平的x优化提升。同时数字孪生技术是智慧矿山 的重要组成部分,通过将矿山的物理实体实时映射到虚拟模型,便于工程师对矿山 状况进行精确测量和精准控制,以及在多维复杂约束条件下对采矿生产活动进行 模拟推演,这将进一步提高矿山生产组织效率以及安全管控水平,推进矿山生产的 少人化和无人化。

 

 

“AI+视频会议”:从具体场景来说,视频会议中天然存在多个环节,可以通 过 AI 技术赋能,例如会议纪要的快速生成,会议要点提醒、会议实时记录与反馈、 会议进行中与外部的连接等。

微软:Copilot 成为视频会议“管家”。根据微软的 Microsoft 365 Copilot 发 布会,Copilot 能够实现的功能包括:1、精准总结会议要点;2、针对会议讨论的 问题,能够直接回答讨论结果;3、可以跟进会议进程,提示会议尚未讨论的问题; 4、自动生成纪要,提炼要点;5、中途离开会议可以向 Copilot 提问;6、提问会 议的实时内容。 谷歌:将生成式 AI 技术装入旗下办公软件。就在 OpenAI 推出 GPT-4 的同 每天,谷歌也宣布将生成式 AI 装进其 Workspace“全家桶”,可以实现自动撰写 电子邮件或生成文档摘要等功能,该功能覆盖谷歌邮箱(Gmail)、谷歌文档 (Google Docs)、表格(Sheets)等组件。其中对于视频会议,在 Google Meet 中提供新的 AI 背景生成、笔记记录、总结等功能。

“AI+5G 消息”:ChatGPT 有望带来 5G 消息重构。5G 消息的核心应用 Chatbot (聊天机器人),其本质是随时响应用户消息服务,与 ChatGPT 的交互 性不谋而合。作为 5G 消息的行业龙头梦网科技,在携手三大运营商及头部终端 厂商,于金融、政务、互联网等多个行业领域应用,构建十数万家大中型企业与超 十亿个人用户的沟通桥梁,并通过云短信、云 5G 富媒体消息、AIM/短信小程序 (富信 2.0)、Chatbot 消息等功能筑造供多网合一的统一消息中心,5G 消息布 局已初现峥嵘。

“Al+法院”:法院业务流程中涉及立案、审判、执行等多个环节,产生大量会 议、文件、卷宗,是 ChatGPT 的x佳使用场景。目前金桥信息与蚂蚁在人工智能 领域深度合作,要素式立案平台就是典型的 AI 赋能下的复杂文本结构化标准化 处理平台。金桥的云平台业务主要聚焦法院信息化,以移动执行平台为典型代表, 通过 管理平台+移动 APP 的形式解决法院在执行过程中的突出痛点。该业务目 前已经 实现 3500+法院的全覆盖,同时采用 Saas 模式收费,商业模式更优。

 

 

3 计算机超行情的基础:AI 引爆需求同时提 升人效

3.1 需求提升,进入行业核心业务

目前各行业 IT 市场规模占该行业总规模比例较低,核心在于计算机行业主要 为行业承担提升信息效率的功能,而 AI 时代将彻底重塑计算机行业与各行业的关 系,成为创造行业价值的主体,这是计算机超行情x重要的逻辑基础。目前各行 业 IT 主要解决信息效率问题而非创造价值;AI 时代,AI 赋能各行业功能的深度和 广度呈指数增长,将扮演行业运转的价值创造者和重要组成部分。

3.2 AI将全面带动计算机公司全面转型DevOps降本增效

软件开发模式不断改进以满足降本增效的需求,DevOps 是目前降本增效效 果x好的软件开发模式,但由于相关生态工具学习较为复杂、编程难度高导致渗透 率较低。传统低代码编程平台受限于自身资源库禀赋难以覆盖全市场客户需求,并 不能真正解决问题,直到 2022 年底生成式 AI 面世使得 AI 编程成为现实,微软全 能 AI 编程应用 Copilot X 发布彻底解决 DevOps 编程难度高的痛点,DevOps 有 望在软件公司全面渗透,进而促进行业整体降本增效。 软件行业的软件生产的部署效率、出现故障后恢复服务的时间、软件运维等需 求日益高长,软件开发模式一直朝自动化、便捷化、智能化方向发展,以达到降本 增效的效果:

1)2000 年之前,软件开发模式为瀑布式开发。据敏捷开发论坛,瀑布式开 发模式通过制定计划、需求分析、软件设计、程序编写、软件测试、运行维护等 6 个流程将整个软件生命周期衔接起来,这 6 个流程有着严格的先后次序之分,只 有当前面的流程结束之后,下一个流程才能开始运转,会导致大量资源闲置空转。

2)2000 年至今,敏捷开发模式逐渐成为主流。据敏捷开发论坛,敏捷式开 发模式采用“迭代开发”,将软件项目需求分成多个迭代,且每个迭代成果在完成 开发、测试、反馈等环节后都可以进行交付。也就是说,在将软件交付到客户手中 之前,开发过程中的任何经过测试的子项目都能够独立运行。但此模式注重的是软 件的开发阶段,并未兼顾到运维阶段。在开发人员与运维人员进行交接的时候,并 没有体现出敏捷的价值、原则,因此开发与运维之间仍缺乏一些必要的协作效率。

 

 

3)未来终的开发模式是 DevOps。据 TIBCO,DevOps 是指通过将所有 与开发和运营相关的人员整合到一个自动化程度很高的工作流程中的开发模式, 有助于加快产品从设计到上市的过程,比传统软件开发更快,因为运营和开发工程 师在从设计到开发流程再到生产支持的整个生命周期中都紧密合作;同时,运营人 员和开发人员经常同时使用许多相同的工具,从而使工作更加顺畅和快捷。

DevOps 开发模式相较传统开发模式显著降本增效,企业若要快速稳定地大 规模交付高品质软件,DevOps 模式已成为如今的不二之选。据华为、DORA 测 算,如果开发团队采用 DevOps 开发模式,其代码部署的效率将提高 46 倍,变更 代码的速度将提升 2500 倍;从稳定性来看,DevOps 的代码变更失败率比过去低 7 倍,故障恢复速度比过去提升 2600 倍。谷歌于 2019 年发布白皮书《The ROI of DevOps Transformation》,在一个涉及超万人的大型试验中使用每年避免的 不必要的返工费用、来自再投资的潜在收入、每年的停机时间成本节约作为降本增 效的收益,将该收益当作收入,与部署 DevOps 的费用进行比较,ROI 达到 10.8, 证明了 DevOps 的强大降本增效能力和对软件公司向 DevOps 转型的必要性。

虽然 DevOps 开发模式降本增效显著,但完整、成熟的 DevOps 开发模式渗 透率较低。国内外 DevOps 开发模式渗透率仍然处于较低水平:1)全球来看据贝 恩咨询,2021 年全球软件公司中虽然超过 90%的公司表示他们至少在某些情况 下采用了 DevOps,但只有大约 50%的公司广泛使用 DevOps,同时只有 12% 的公司认为他们的 DevOps 功能完整、成熟,具有完善工具链、完全集成和高度 自动化等特点;2)国内来看,据 2021 年《中国 DevOps 报告》,国内 DevOps成熟度处于全面的企业达到 35.04%,增长 8.84%;16.53% 企业实践成熟度 处于优秀,0.87% 的企业处于挺好。

DevOps 生态工具复杂,使用难度高,学习成本大是渗透率难以提升的主要 原因。DevOps 生态工具复杂,以国内为例,据 2021 年《中国 DevOps 报告》, 仅国内主流安全工具一项就分为代码安全工具 Coverity、主机安全工具绿盟、代 码安全工具 Fortify 以及 Web 安全工具 AppScan 等,此外还有开源软件安全 GitLab、主机安全 Nessus、威胁情报奇安信、威胁建模 Microsoft Threat Modeling Tool、代码安全 Cppcheck 等众多品类;为了对接不同客户需求,工 作人员有时需要全面熟记各类工具的编程策略,难度较大。据 Opsera 研究,由于 工具种类繁多,加大开发者的编程难度,DevOps 提升效率有限。

 

 

对于解决 DevOps 的痛点,传统方法是使用低代码编程平台,但受限于低代 码编程平台的“资源池”限制无法灵活编程。传统低代码开发平台原理是直接调用 平台“资源池”中存储数据库、中间件等,其定制能力、灵活性和集成选项是有限的,并且也可能出现安全问题。据 51CTO,目前低代码快速开发平台大多是模块 预定制、存储过程预定制之类先定制些功能模块单元,然后通过可视化编辑或者少 量代码来实现功能单元的调用,对于标准化、成熟、简单的功能应用问题会少些, 但涉及到复杂的以及新的功能应用还是要依赖平台提供商开发新的功能单元来支 持的;此外,低代码编程平台有时会运行缓慢且与硬件交互差,甚至会降低程序员 的效率。

生成式 AI 真正做到主动编程,能够灵活应对各类 DevOps 场景,且费用 低,是x终解决方案。以 OpenAI 的 AI 编程应用 CodeX 为例,CodeX 基于 GPT3 大模型训练,训练数据来自于包含微软 GitHub 代码库在内的数十亿行代码,在生 成式 AI 的帮助下,CodeX 不仅仅像传统低代码平台一样调用已有资源,而是真正 可以根据用户自然语言描述进行编程。

微软 Copilot X 打造顶 AI 编程产品,让制作者可以用自然语言描述他们想 要的应用、流程,带来软件开发、流程构建革命。3 月 15 日,微软正式发布 Copilot, 并将其应用于 Microsoft Power Platform 的一个新功能,可以在 Power Apps, Power Virtual Agents 和 Power Automate 中基于 GPT 能力提供 AI-powered的帮助,让制作者可以用自然语言描述他们想要的应用、流程,Copilot 可以在几 秒钟内完成创建,并提供改进的建议。

 

 

具体体现在以下几个方面:

【Power Apps】制作者可以利用 Copilot 通过自然语言对话的方式来描述 需求,创建需要的轻量 APP。早在 2021 年 Power Apps 就已经引入了 GPT 的 功能,可以通过自然语言来生成 Power Fx 公式,再到之前可以基于图片生成应用 界面。而现在制作者可以利用 Power Apps Copilot 通过几句简单的自然语言对 话来直接生成应用,不仅是界面,还包括了数据表和业务逻辑。制作者还可以通过 和 Copilot 的对话来对应用进行调整,比如在数据表中添加新列,甚至是给数据表 填充示例数据等,同时 Copilot 也可以为我们提供应用的改进建议。

【Power Automate】制作者可以利用 Copilot 通过自然语言创建自动化流 程。通过 Power Automate Copilot,无论是简单流程还是复杂流程,都可以通过 自然语言来生成。同时 Copilot 还可以以对话的方式不断优化和迭代更新流程。另 外在 Power Automate Desktop 桌面版本上,制作者也可以使用 GPT 模型来生 成文字内容。同时 AI Builder x新集成的 Azure Open AI 服务,现在也可以直接 在 Power Automate Desktop 中使用,所以在 RPA 的领域,制作者能随时随地 享用到 Open AI 带来的各种智能服务,无论是收集反馈意见,从大量文本中提取 关键信息都可以直接通过 RPA 搭配 Open AI 的方式实现。

【Power Virtual Agents】制作者可以通过 Power Virtual Agents 构建自 动化服务机器人。客户只需引入一个网站地址,便可以将自己的 Power Virtual Agents 与网站内容、知识库等信息进行连接,让 GPT 自动生成回答,这个功能让 企业可以快速为客户提供机器人服务,对内或者对外进行服务。现在客户可以利用 Power Virtual Agents Copilot 直接使用自然语言来描述机器人流程,而不需要 手动创建,让客户能够在几分钟内快速创建和迭代任何机器人,甚至是触发短语, 问题,实体,变量,自适应卡和各种逻辑。另外,现在 Power Virtual Agents 也 可以原生集成到 Power Apps 中,提高用户体验。

3.3 计算机行业人效提升空间测算

计算机行业人均创收水平低于 A 股整体平均水平,AI 发展大潮下具有提升空 间。2018-2022 年,计算机行业人均创收中位数低于 A 股对应水平。计算机行业 属于高科技行业,创收能力本应强于所有行业的整体水平,但由于受下游景气度影 响、新技术变现进程较慢、现场实施交付和定制化开发导致人员数量增长较快等影 响,人均创收能力低于 A 股平均水平。

 

 

计算机行业人均创利水平低于 A 股整体平均水平,AI 发展大潮下同样具有提 升空间。2018-2022 年,计算机行业人均创利中位数低于 A 股对应水平,且差距 有拉大趋势。

计算机行业人均创利中位数低于 A 股对应水平,除了受人均创收水平影响之 外,成本端也是重要原因:从三费具体情况看,计算机行业研发费用水平明显高于 A 股整体水平,成为提升整体费用水平的核心原因。 1)销售费用率:计算机行业整体销售费用率水平高于 A 股整体水平。计算机 行业正处于快速发展阶段,公司为拓展份额占领市场往往加大销售投入。 2)管理费用率:计算机行业整体水平低于 A 股整体水平,说明计算机行业内 部管理水平相对较高,同时计算机行业自身轻资产、重研发、管理灵活等特点也决 定了自身管理费用水平相对较低。 3)研发费用率:计算机行业整体水平明显高于 A 股水平,因为计算机行业重 研发特点明显,往往需要前瞻性投入去布局新技术。同时,计算机行业公司多数面 向 B 端、G 端客户,相关客户的需求往往具有定制化特点,需要配备相应的研发 人员来满足客户需求。

因此,AI 技术对于计算机提升人效具有重要意义:x,AI 大潮下软件定义 世界,AI 应用需求全面爆发进而带来人均创收的长期提升,同时 AI 有望明显提升 编程等工作效率,降低人均成本,x终带来人效提升。第二,研发成本为计算机行 业主要的成本,AI 提升效率有望带来对相关成本的合理控制。

 

免责声明

    版权声明:本文内容由网友上传(或整理自网络),原作者已无法考证,版权归原作者所有。省心文案网免费发布仅供学习参考,其观点不代表本站立场,本站不承担任何法律责任!

相关文章

在线客服

扫码一对一人工服务